Web Application Reinforcement via Efficient Systematic Analysis and Runtime Validation (ESARV)
نویسندگان
چکیده
منابع مشابه
construction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
Efficient Deep Web Crawling Using Reinforcement Learning
Deep web refers to the hidden part of the Web that remains unavailable for standard Web crawlers. To obtain content of Deep Web is challenging and has been acknowledged as a significant gap in the coverage of search engines. To this end, the paper proposes a novel deep web crawling framework based on reinforcement learning, in which the crawler is regarded as an agent and deep web database as t...
متن کاملSecuriFly: Runtime Protection and Recovery from Web Application Security Vulnerabilities
This reports presents a runtime solution to a range of Web application security vulnerabilities. The solution we proposes called SecuriFly consists of instrumenting the application to precisely track the flow of data. When a potential vulnerability is observed, the application is either terminated to prevent the vulnerability from being exploited or special recovery code is executed and the app...
متن کاملEfficient Reinforcement Learning via Initial Pure Exploration
In several realistic situations, an interactive learning agent can practice and refine its strategy before going on to be evaluated. For instance, consider a student preparing for a series of tests. She would typically take a few practice tests to know which areas she needs to improve upon. Based of the scores she obtains in these practice tests, she would formulate a strategy for maximizing he...
متن کامل(More) Efficient Reinforcement Learning via Posterior Sampling
Most provably-efficient reinforcement learning algorithms introduce optimism about poorly-understood states and actions to encourage exploration. We study an alternative approach for efficient exploration: posterior sampling for reinforcement learning (PSRL). This algorithm proceeds in repeated episodes of known duration. At the start of each episode, PSRL updates a prior distribution over Mark...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
سال: 2020
ISSN: 2089-3272,2089-3272
DOI: 10.11591/ijeei.v8i2.1107